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The use of TKIs has elicited remarkable therapeutic responses in 
individuals presenting with a broad range of malignancies driven by 
oncogenic kinases1. However, before the use of TKIs, such malignan-
cies were regarded as highly chemoresistant, as exemplified by break-
point cluster region (BCR)–c-abl oncogene 1, non-receptor tyrosine 
kinase (ABL1) kinase-driven CML and EGFR NSCLC2,3. After the 

advent of TKIs, treatment responses in both of these cancers typically 
approached 80% (refs. 4,5). These clinical observations emphasized 
the importance of classifying tumors according to their molecular 
drivers and at the same time stimulated the search for biomarkers that 
could identify the 20% of individuals at risk for primary or intrinsic 
TKI resistance, as well as guide therapy to overcome this resistance.  
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A common BIM deletion polymorphism mediates 
intrinsic resistance and inferior responses to tyrosine 
kinase inhibitors in cancer
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Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic 
myeloid leukemia (CML) and epidermal growth factor receptor–mutated non–small-cell lung cancer (EGFR NSCLC). However, the 
extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers affecting an individual’s 
response to TKIs. Using paired-end DNA sequencing, we discovered a common intronic deletion polymorphism in the gene 
encoding BCL2-like 11 (BIM). BIM is a pro-apoptotic member of the B-cell CLL/lymphoma 2 (BCL2) family of proteins, and its 
upregulation is required for TKIs to induce apoptosis in kinase-driven cancers. The polymorphism switched BIM splicing from 
exon 4 to exon 3, which resulted in expression of BIM isoforms lacking the pro-apoptotic BCL2-homology domain 3 (BH3). The 
polymorphism was sufficient to confer intrinsic TKI resistance in CML and EGFR NSCLC cell lines, but this resistance could be 
overcome with BH3-mimetic drugs. Notably, individuals with CML and EGFR NSCLC harboring the polymorphism experienced 
significantly inferior responses to TKIs than did individuals without the polymorphism (P = 0.02 for CML and P = 0.027 for EGFR 
NSCLC). Our results offer an explanation for the heterogeneity of TKI responses across individuals and suggest the possibility of 
personalizing therapy with BH3 mimetics to overcome BIM-polymorphism–associated TKI resistance.
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In this respect, we note that although polymorphisms in genes regu-
lating drug metabolism provide useful information to modify the 
dosing of therapeutic agents6, few examples exist in the germline that 
predict response to targeted therapies.

Accordingly, we investigated whether polymorphisms affecting TKI 
sensitivity might account for the 20% of TKI-treated individuals with 
poor responses and whether these polymorphisms might be enriched 
among genes that are crucial in the apoptotic response to TKIs. One 
such candidate gene is BCL2L11 (also known as BIM), which encodes 
a BH3-only protein that is a BCL2 family member. The BH3-only pro-
teins activate cell death by either opposing the prosurvival members of 
the BCL2 family (BCL2, BCL2-like 1 (BCL-XL, also known as BCL2L1), 
myeloid cell leukemia sequence 1 (MCL1) and BCL2-related protein 
A1 (BCL2A1)) or by binding to the pro-apoptotic BCL2 family mem-
bers (BCL2-associated X protein (BAX) and BCL2-antagonist/killer 1 
(BAK1)) and directly activating their pro-apoptotic functions7. Others 
have previously shown that several kinase-driven cancers, including 
CML and EGFR NSCLC, maintain a survival advantage by suppressing 
BIM transcription and by targeting BIM protein for proteasomal degra-
dation through mitogen-activated protein kinase 1 (MAPK1)-dependent  
phosphorylation8–13. Furthermore, in all of these malignancies, BIM 
upregulation is required for TKIs to induce apoptosis, and suppression 
of BIM expression is sufficient to confer in vitro TKI resistance8–13.

Here we describe the discovery of a common deletion polymorphism 
in the BIM gene that results in the generation of alternatively spliced iso-
forms of BIM that lack the crucial BH3 domain. This polymorphism has 
a profound effect on the TKI sensitivity of CML and EGFR NSCLC cells, 
such that one copy of the deleted allele is sufficient to render cells intrinsi-
cally TKI resistant. We show that individuals with the polymorphism have 
markedly inferior responses to TKI than do individuals without the poly-
morphism. Specifically, the polymorphism correlated with a lesser degree 
of response to imatinib, a TKI, in CML as well as a shorter progression- 
free survival (PFS) with EGFR TKI therapy in EGFR NSCLC.

RESULTS
A new BIM deletion polymorphism in resistant CML samples
To identify new TKI-resistance mechanisms in CML, we used mas-
sively parallel DNA sequencing of paired-end ditags14,15 to interrogate 

the genomes of five CML samples obtained from subjects who were 
either sensitive to or resistant to treatment with TKIs (Supplementary 
Tables 1 and 2). We identified the BCR-ABL1 translocation in all 
CML samples, but not in control samples from patients in complete 
remission, and we also identified several CML-specific structural 
variations (Supplementary Fig. 1 and Supplementary Tables 3–6).

Among the structural variations that were common to all the TKI-
resistant samples, one in particular attracted our attention because 
it occurred in intron 2 of the BIM gene (Fig. 1a). This structural 
variation comprised an identical 2,903-bp genomic deletion that 
was common to all three resistant samples (Fig. 1a–c), suggesting 
that it was germline and polymorphic. After screening 2,597 healthy 
individuals, we found the deletion polymorphism to occur com-
monly in East Asian individuals (12.3% carrier frequency), but it was 
absent in individuals from African and European populations (0%) 
(Supplementary Table 7).

Functional effects of the BIM deletion polymorphism
Inspection of BIM gene structure suggested that the splicing of exon 3  
and the splicing of exon 4 occur in a mutually exclusive manner 
because of the presence of a stop codon and a polyadenylation sig-
nal within exon 3 (Fig. 2a and Supplementary Fig. 2a)16,17. Indeed, 
sequencing of all identifiable BIM transcripts in CML cells con-
firmed that exons 3 and 4 never occurred in the same transcript 
(Supplementary Fig. 2b), consistent with prior reports17. Because 
of its close proximity (107 bp) to the intron-exon boundary at the 
5′ end of exon 3, we hypothesized that the deletion polymorphism 
would result in preferential splicing of exon 3 over exon 4 (Fig. 2a)18. 
To determine whether this was the case, we constructed a minigene to 
assess whether the deletion leads to the preferential inclusion of exon 3  
over exon 4 (Fig. 2b)19 and found that the presence of the deletion 
favored splicing to exon 3 over exon 4 by at least fivefold (Fig. 2c). 
Notably, primary cells from individuals with CML showed the same 
phenomenon, as evidenced by the fact that polymorphism-containing  
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Figure 1 A 2,903-bp deletion polymorphism in intron 2 of BIM is present 
in TKI-resistant CML samples. (a) A Genome Browser view of the DNA–
paired-end tag (PET) data encompassing chromosome 2 111,580,000–
111,650,000 bp from the five clinical CML samples and K562 cells. 
Detection of the BIM deletion polymorphism by DNA-PET analysis in 
three of three samples from individuals with resistance to imatinib (P308, 
P022 and P098) but not in samples from subjects or cell lines that are 
sensitive to imatinib (P145, P440 and K562). The asterisks indicate that 
the samples (P145 and P440) were obtained from the same individual at 
presentation in chronic phase CML and when in major molecular remission, 
respectively. The red tracks represent the number of the sequenced 
concordant PETs that map to the region (coverage). The burgundy and 
pink horizontal arrowheads connected by green lines represent mapping 
regions of discordant PETs and indicate the presence of a deletion. The 
vertical dashed lines depict the deleted region. (b) Schematic depicting 
the intronic BIM deletion polymorphism and its flanking sequences. 
The breakpoints were identified by Sanger sequencing of PCR products. 
Deleted sequences are highlighted in blue. The human reference sequence 
coordinates are based on NCBI Build 36. (c) Agarose gel showing the PCR 
products from the five subject samples and K562 cells using primers that 
flanked the deletion. PCR products with a size of 4,226 bp and 1,323 bp 
correspond to the alleles without and with the deletion, respectively. The 
presence of both the 4,226-bp and 1,323-bp products indicates that the 
individual is heterozygous for the deletion polymorphism.
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samples had higher expression of exon-3– compared to exon-4– 
containing transcripts, whereas general BIM transcription was unaf-
fected by the polymorphism (Fig. 2d). We observed similar results 
in lymphoblastoid cell lines obtained from normal healthy HapMap 
individuals, indicating that the polymorphism has a cell-lineage–
independent effect (Supplementary Fig. 2c). Taken together, these 
results suggest that the 2.9-kb deleted region contains cis elements 
that suppress the splicing of BIM exon 3, which, in cells harboring the 
deletion, results in preferential splicing of exon 3 over exon 4.

Because the pro-apoptotic BH3 domain is encoded exclusively by 
exon 4 of BIM (Fig. 2a)17 and is required for BIM’s apoptotic func-
tion20,21, our observations suggest a previously unidentified mechanism 
for TKI resistance. In this model, after TKI exposure, polymorphism-
containing CML cells would favor the expression of exon-3– over 
exon-4–containing BIM transcripts, resulting in decreased expression 
of BH3-containing BIM isoforms and, consequently, impaired BH3-
domain–dependent apoptosis. To facilitate the study of this issue, we 
identified a Japanese CML cell line, KCL22 (ref. 22), that contained the 
deletion (Fig. 2e) and confirmed that cells from the line expressed an 
increased ratio of exon 3 to exon 4 transcripts compared to cells without  

the deletion (Fig. 2f). KCL22 cells also showed a decreased induc-
tion of exon-4–containing transcripts after TKI exposure (Fig. 2g),  
as well as decreased concentrations of BIMEL protein, a major 
BH3-containing BIM isoform (Fig. 2h)17. Consistent with previ-
ous reports22–24, KCL22 cells were resistant to imatinib-induced 
apoptosis (Supplementary Fig. 2d) and showed impaired apoptotic 
signaling after imatinib exposure despite effective BCR-ABL1 inhibi-
tion, as confirmed by a decrease in BCR-ABL1–dependent signaling  
(Fig. 2h,i)25,26. KCL22 cells were also exquisitely sensitive to induc-
tion of apoptosis after increased expression of exon-4–containing and, 
therefore, BH3-encoding (but not exon-3–containing) BIM isoforms 
(Supplementary Fig. 2e). This observation suggested that the impaired 
imatinib-induced apoptosis in KCL22 cells could be restored by the 
addition of BH3-mimetic drugs, which functionally mimic BH3-only  
proteins by binding and inhibiting pro-survival BCL2 family members27.  
As shown in Figure 2j, we found that this was indeed the case. In 
addition, we confirmed that siRNA-mediated knockdown of exon-3– 
containing transcripts did not sensitize KCL22 cells to imatinib,  
indicating that exon-3–containing isoforms probably do not have a 
role in TKI resistance (Supplementary Fig. 2f–h).
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Figure 2 Effects of the deletion polymorphism on BIM gene function. (a) Genomic organization of BIM (top) showing exons for the major BIM transcript 
splice isoforms (bottom), including BIMEL, BIML and BIMS, as well as BIM-γ, which lacks the BH3 domain17. The deletion polymorphism between 
exons 2 and 3 is highlighted with a red line. The exons containing the start codon (start), the dynein-binding domain (DBD), the BH3 domain (BH3) and 
the stop codon and polyadenylation signal sequences (Stop/PolyA) are also highlighted. Exon 4 encodes for the BH3 domain that is required for BIM 
apoptotic function, whereas exon 3 lacks this domain. Because exon 3 and exon 4 undergo mutually exclusive splicing, exon-3–containing transcripts 
will not contain a BH3 domain. The diagram is not drawn to scale. E, exon. (b) Schematic of the two minigene constructs used for measuring splicing 
to exons 3 and 4. (c) The increased ratio of exon 3 to exon 4 transcripts in the non-deletion minigene construct compared to the deletion minigene 
construct in K562 cells (left) and in KCL22 cells (right). Data are mean ± s.e.m. *P = 0.0002, **P = 0.012 (Student’s t test). (d) Expression of exon-
specific transcripts of BIM in 23 samples from subjects with CML. n = 11 subjects without the deletion (WT), and n = 12 subjects with the deletion 
(carriers). The amounts of the various transcripts containing exons 2A, 3 or 4 are expressed as normalized ratios relative to exon 2A (for exons 3 and 4)  
or β-actin (ACTB, for exon 2A (total BIM transcripts). We measured exon 2A transcripts as a readout for all BIM transcripts, as exon 2A contains the 
start site and is present in all transcripts. The mean and s.e.m. are represented by the red lines and bars. The expressions for the one homozygous 
carrier are highlighted in green. Statistical significance was determined using the Wilcoxon rank-sum test. (e) Agarose gel of the PCR products, using 
the method described in Figure 1c, to detect the polymorphism in a collection of East Asian and non–East Asian CML cell lines. The KCL22 line carries 
the deletion polymorphism and is highlighted in red. (f) Ratio of exon-3– to exon-4–containing transcripts in CML cell lines with (KCL22) and without 
(K562 and KYO-1) the deletion polymorphism. Data are mean ± s.e.m. *P = 0.016, **P = 0.011 (Student’s t test). (g) The expression of exon-4– 
specific transcripts of BIM (normalized to β-actin), as measured by quantitative PCR (qPCR) in cell lines with and without the deletion polymorphism 
treated with DMSO or imatinib. Data are mean ± s.e.m. *P = 0.01, **P = 0.004 (Student’s t test) with respect to imatinib-treated KCL22 cells.  
(h) Western blot showing upregulation of BIM and the inhibition of signaling pathways downstream of BCR-ABL1 kinase in CML cell lines as a result 
of imatinib treatment. CRKL, v-crk sarcoma virus CT10 oncogene homolog (avian)-like; pCRKL, phosphorylated CRKL; STAT5A, signal transducer and 
activator of transcription 5A; pSTAT5A, phosphorylated STAT5A; RPS6, ribosomal protein S6; pRPS6, phosphorylated RPS6; MW, molecular weight.  
(i) Western blot showing caspase 3 cleavage in cells treated as in h. (j) Western blot showing caspase 3 cleavage in cell lines treated with imatinib and 
with or without the BH3-mimetic drug ABT-737.np
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The BIM deletion and intrinsic TKI resistance in CML cells
We next used gene targeting facilitated by zinc finger nuclease (ZFN) 
to precisely recreate the deletion polymorphism in the BIM gene of 
imatinib-sensitive K562 CML cells (Fig. 3a). We then analyzed these 
cells for changes in BIM splicing and expression, as well as for TKI-
induced apoptosis. We generated subclones that were heterozygous 
(K562-BIMi2+/−) or homozygous (K562-BIMi2−/−) for the deletion 
polymorphism (Fig. 3b). We confirmed an increased ratio of exon 3  
to exon 4 transcripts (Fig. 3c), as well as a small but reproducible  
increase in BIM-γ protein expression (Supplementary Fig. 3a), in cells 
from both subclones in a polymorphism-dosage–dependent manner. 
We attribute the low expression of BIM-γ protein, even in the cells 
homozygous for the deletion polymorphism, to the relatively short 
half-life of BIM-γ (<1 h) (Supplementary Fig. 3b). Cells containing  
the deletion polymorphism also showed decreased induction of exon-4– 
containing transcripts after imatinib exposure (Fig. 3d), as well as 
impaired upregulation of BIMEL protein, diminished apoptotic signal-
ing and decreased apoptotic cell death, as measured by DNA fragmen-
tation in an ELISA-based assay (Fig. 3e,f and Supplementary Fig. 3c).  
As in KCL22 cells, the combination of the BH3 mimetic ABT-737 
with imatinib enhanced the ability of the latter to activate apoptosis 
in polymorphism-containing cells (Fig. 3g,h). In parallel experi-
ments, we re-expressed the most abundant BIM isoform, BIMEL, in  
polymorphism-containing cells treated with or without imatinib. 
Analogous to the effects seen with ABT-737 treatment, the forced 
expression of BIMEL enhanced the ability of imatinib to activate apop-
tosis in deletion-containing K562 cells (Supplementary Fig. 3d). We 
also found that primary CML cells obtained from subjects with the 
deletion polymorphism were less sensitive to imatinib-induced death 

compared to cells from individuals without the deletion and that the 
relative TKI resistance of the cells with the deletion could be overcome 
with the addition of ABT-737 (Fig. 3i). Taken together, our studies 
establish that the BIM deletion polymorphism impairs the apoptotic 
response to imatinib by biasing splicing away from BH3-containing BIM  
isoforms and that this bias is sufficient to render CML cells intrinsi-
cally resistant to imatinib. We also show that the apoptotic response to 
imatinib can be restored in polymorphism-containing cells by treat-
ment with BH3-mimetic drugs.

The BIM deletion as a biomarker for TKI responses in CML
Next, we performed a retrospective analysis on the influence of the 
deletion polymorphism on TKI responses in East Asian subjects with 
CML. Using a group of newly diagnosed persons with chronic phase 
CML from two independent East Asian (Singapore and Malaysia or 
Japan) cohorts (n = 203), we compared the clinical responses to first-
line therapy with a standard dose of imatinib (400 mg per day) in indi-
viduals with and without the deletion polymorphism. We classified 
the clinical responses according to the European LeukemiaNet (ELN) 
criteria (Supplementary Table 8)5 and defined resistant individuals as 
‘suboptimal responders’ or ‘failures’ per ELN criteria (which includes 
subjects who never achieve either a complete cytogenetic response or a 
3-log decrease in BCR-ABL1 transcript levels), whereas sensitive indi-
viduals corresponded to ELN-defined ‘optimal responders’. In both 
geographic cohorts, subjects with the deletion polymorphism were 
more likely to have resistant disease than sensitive disease compared 
to controls (Table 1). When analyzed together, the overall odds ratio 
for resistant disease among subjects with the deletion polymorphism 
compared to those without it was 2.94 (P = 0.02, 95% CI 1.17–7.43). 
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Figure 3 De novo generation and analysis  
of CML cell lines with the BIM deletion  
polymorphism. (a) Schematic representation  
of the strategy of using ZFNs to introduce  
the BIM deletion polymorphism into the genome of the K562 CML cell line. (b) Agarose gel of the  
PCR products, using the method described in Figure 1c to detect the polymorphism in genome- 
edited K562 cell lines, with KCL22 cells being used as a control. Clones that were negative for the  
deletion polymorphism (K562-BIMi2+/+), as well as those that were heterozygous (K562-BIMi2+/−) and  
homozygous (K562-BIMi2−/−) for it, were isolated. (c) The ratio of exon 3 to exon 4 transcripts, as  
measured by qPCR in K562-BIMi2+/+, K562-BIMi2+/− and K562-BIMi2−/− cells. Data are mean ± s.e.m.  
*P = 0.002, **P = 0.0001 (Student’s t test). (d) Expression of exon-4–containing transcripts after  
imatinib or DMSO exposure in K562-BIMi2+/+, K562-BIMi2+/− and K562-BIMi2−/− cells. Data are  
mean ± s.e.m. *P = 0.015, **P = 0.001 (Student’s t test). (e) Western blot of cell lysates from  
K562-BIMi2+/+, K562-BIMi2+/− and K562-BIMi2−/− cells after imatinib treatment. (f) Relative apoptotic cell  
death, as measured by DNA fragmentation in an ELISA-based assay. Data are mean ± s.e.m. **P = 0.006,  
***P = 0.00021 (Student’s t test). Results were normalized to the K562-BIMi2+/+ DMSO-treated control. (g) Western blot showing the effect of adding 
the BH3-mimetic drug ABT-737 to imatinib with respect to apoptotic signaling in K562-BIMi2+/+, K562-BIMi2+/− and K562-BIMi2−/− cells. (h) Relative 
apoptotic cell death for cells treated as in g using the method described in f. Data are mean ± s.e.m. (i) Apoptotic cell death as measured by Annexin V 
staining. Primary CML cells were obtained from individuals without and with the deletion polymorphism. The mean and s.e.m. are represented by the red 
lines and bars. Results for the one homozygous carrier are highlighted in green. Statistical significance was determined using the Wilcoxon rank-sum test.
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By comparison, we found no significant differences between the 
two groups with respect to other potential prognostic or confound-
ing factors, including median time from diagnosis to initiation of 
imatinib treatment, Sokal score at diagnosis or prior treatment with 

interferon (Supplementary Table 9). We also noted that the majority 
of resistant subjects with the polymorphism subsequently did not 
respond to second-generation TKI therapy (Supplementary Table 10),  
a finding that is in line with the intrinsic resistance we observed in 
the cell lines.

TKI resistance in CML is most commonly associated with the 
acquisition of somatic mutations in the BCR-ABL1 kinase domain, 
which can be found in up to 50% of resistant individuals in the chronic 
phase of disease28. However, because the deletion polymorphism is 
germline and is sufficient to cause intrinsic TKI resistance in vitro 
(Fig. 3), we predicted that such individuals would be resistant even 
in the absence of a kinase-domain mutation. Accordingly, we divided 
the subjects into the following three clinical groups: resistant without 
a BCR-ABL1 mutation (group 1), resistant with a BCR-ABL1 mutation 
(group 2) or sensitive (group 3). We found that individuals with the 
polymorphism, compared to those without, were more likely to be in 
group 1 than in groups 2 and 3 combined (odds ratio = 1.90, 95% CI 
1.08–4.35) (Supplementary Table 11). These data provide a second 
clinical validation of our hypothesis.

The BIM deletion as a biomarker in EGFR NSCLC
We next validated the role of the BIM polymorphism in another kinase-
driven cancer, EGFR NSCLC, in which sensitizing mutations in EGFR pre-
dict high response rates in individuals treated with EGFR inhibitors29,30 
and in which BIM expression is required for TKI sensitivity11–13. An addi-
tional and relevant aspect of this cancer is that it is particularly common 
in East Asian countries, where activating EGFR mutations can be found 
in up to 50% of NSCLCs (compared to 15% in the western countries4)  
and are enriched for among female East Asian nonsmokers31–33.

Table 1 Association of the BIM deletion polymorphism with 
clinical resistance to imatinib in subjects with CML

No BIM deletion 
polymorphism 

% (n )

BIM deletion  
polymorphism  

% (n)

Singaporean and  
Malaysian cohort (n = 138)
Sensitive 51 (64) 33 (5) OR = 2.73  

(95% CI 0.87–8.57)

Resistant 49 (59) 67 (10) P = 0.09

Japanese cohort (n = 65)
Sensitive 43 (23) 17 (2) OR = 3.52  

(95% CI 0.69–18.00)

Resistant 57 (30) 83 (10) P = 0.13

Combined cohorts OR  
(n = 203) 

OR = 2.94
(95% CI 1.17–7.43) 
P = 0.02

Subjects with newly diagnosed chronic phase CML were analyzed according to their 
cohorts of origin (Singaporean and Malaysian or Japanese) and divided into those with 
and those without the BIM deletion polymorphism. Individuals were then classified 
as resistant (‘suboptimal response’ or ‘failure’ per ELN criteria) or sensitive (‘optimal 
response’ per ELN criteria) to imatinib. Statistical analysis testing for the association 
between the BIM deletion polymorphism and clinical resistance to imatinib was carried 
out using logistic regression on the individual cohort tables adjusting for any effects of 
age differences between groups with and without the BIM deletion polymorphism  
(Supplementary Table 9). The unadjusted odds ratio (OR) was 2.85 (P = 0.02, 95%  
CI 1.15–7.08). The statistics for the combined cohorts are shown in bold for visualiza-
tion purposes and to distinguish these results from those of each individual cohort.
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Figure 4 The BIM deletion polymorphism is sufficient to cause intrinsic TKI resistance in EGFR NSCLC cell lines. (a) An agarose gel of the PCR 
products, using the method described in Figure 1c to detect the polymorphism in HCC2279 cells. (b) Ratio of exon-3– to exon-4–containing transcripts 
in NSCLC cell lines with (HCC2279) and without (PC9) the deletion polymorphism. Data are mean ± s.e.m. (c) Peripheral blood mononuclear cells were 
obtained from subjects with EGFR NSCLC with and without the deletion and were analyzed for the ratio of exon 3 to exon 4 transcripts using qPCR, as 
described in Figure 2d. (d) An agarose gel of the PCR products, using the method described in Figure 1c to detect the polymorphism in genome-edited 
PC9 cell lines, with HCC2279 cells being used as a control. Clones that were negative for the deletion polymorphism (PC9-BIMi2+/+), as well as those 
homozygous (PC9-BIMi2−/−) for it, were isolated. (e) The ratio of exon 3 to exon 4 transcripts as measured by qPCR in PC9-BIMi2+/+ and PC9-BIMi2−/−cells.  
Data are mean ± s.e.m. *P = 0.0011 (Student’s t test). (f) Western blots of cell lysates from PC9-BIMi2+/+ and PC9-BIMi2−/− cells after treatment with 
increasing concentrations of gefitinib. (g) Relative apoptotic cell death, using the method described in Figure 3f, of PC9-BIMi2+/+ and PC9-BIMi2−/− 
cells treated using DMSO or different concentrations of gefitinib, as indicated. Data are mean ± s.e.m. *P = 0.0009 (Student’s t test). (h) Western blot 
of cell lysates from PC9-BIMi2+/+ and PC9-BIMi2−/− cells treated with gefitinib, ABT-737 or both. (i) Relative apoptotic cell death, using the method 
described in Figure 3f, for cells treated as in h. Data are mean ± s.e.m.
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First we searched for NSCLC cell lines that harbored TKI-sensitizing 
EGFR mutations but were inexplicably TKI resistant (defined as lacking  
any of the known secondary-resistance–conferring mutations). We 
identified one such line, HCC2279, which notably fails to activate apop-
tosis despite effective EGFR inhibition34,35. We confirmed the presence 
of the BIM deletion polymorphism in the HCC2779 cells (Fig. 4a)  
and determined the effects of the deletion polymorphism on BIM func-
tion. The deletion resulted in greater expression of exon-3–containing  
compared to exon-4–containing (and, hence, BH3-containing) BIM 
isoforms compared to cells without the polymorphism (Fig. 4b). 
Notably, primary peripheral blood mononuclear cells from subjects 
with EGFR NSCLC, and with or without the deletion polymorphism, 
showed this same phenomenon (Fig. 4c). HCC2279 cells also had 
decreased induction of exon-4–containing transcripts and BIMEL pro-
tein after TKI exposure, as well as impaired activation of apoptotic sig-
naling, as measured by poly (ADP-ribose) polymerase (PARP) cleavage 
(Supplementary Fig. 4a,b). Consistent with the notion that TKI resist-
ance is a result of decreased concentrations of BH3-containing BIM 
protein, the addition of the BH3-mimetic drug ABT-737 enhanced TKI-
induced apoptotic signaling and cell death (Supplementary Fig. 4c,d).  
To confirm that the polymorphism was sufficient to cause TKI resist-
ance in EGFR NSCLC, we introduced it into TKI-sensitive PC9 cells 
(Fig. 4d). Analogous to our findings in K562-BIMi2−/− cells (Fig. 3), 
we found that, compared to PC9-BIMi2+/+ cells, PC9-BIMi2−/− cells had 
decreased expression of exon-4–containing and BH3-containing BIM 
transcripts and protein, respectively, were intrinsically TKI resistant 
and were re-sensitized to TKIs by ABT-737 (Fig. 4e–i).

Next, we asked whether the deletion correlated with the duration of 
response to EGFR TKIs in subjects with NSCLC with activating EGFR 
mutations. Individuals with or without the deletion polymorphism did 
not differ with respect to known prognostic factors, including stage (as 
more than 85% of the subjects were stage IV) (Supplementary Table 12).  
Nevertheless, the presence of the polymorphism was predictive of a sig-
nificantly shorter PFS, with a median PFS of 6.6 months in individuals 
with the polymorphism compared to 11.9 months for those without it  
(n = 141, P = 0.0027) (Fig. 5a). In multivariate analyses using the Cox 
regression model, only the deletion polymorphism (hazard ratio = 2.08, 
95% CI 1.29–3.38, P = 0.0028) and the presence of the TKI-resistant exon 20  
mutation (hazard ratio = 5.11, 95% CI 1.43–18.31, P = 0.012)36,37 
emerged as independent prognostic factors for shorter PFS.

DISCUSSION
Our findings demonstrate the principle that, although cancers should 
be classified according to their somatically acquired driver mutations, 
germline polymorphisms can directly modulate the responses of such 
cancers to targeted therapies and can strongly influence clinical out-
comes. Notably, we show how a common BIM deletion polymorphism 
contributes to the heterogeneity of responses seen among molecularly 
defined patients with cancer who are treated with targeted therapies. 
Our data also highlight how a single germline polymorphism can 
strongly affect clinical outcomes in different cancers that share a com-
mon biology and probably reflect the central role of BIM in mediating 
TKI sensitivity in these diseases8,11,13. We anticipate that the list of 
cancers in which the BIM polymorphism influences TKI responses 
will expand to include others that also depend on BIM expression for 
TKI sensitivity38–40.

The BIM polymorphism is found only in individuals of East Asian 
descent. It is therefore interesting to note that in CML, a higher rate of 
incomplete cytogenetic responses to imatinib has been reported among 
individuals in East Asia (~50%) compared to individuals in Europe 
and North America (26%)41. To assess the relative contribution of the 
deletion polymorphism to these ethnic differences, we estimated that 
the polymorphism underlies resistance in ~21% of East Asian patients 
(for the population attributable fraction, see the Online Methods). 
This might explain, in part, the differences in complete cytogenetic 
response rates observed between these two world populations.

As a germline biomarker for TKI resistance, the BIM polymorphism 
also offers several advantages over biomarkers comprising acquired 
mutations. First, the BIM polymorphism can be used at the time of 
initial presentation to predict which individuals are at an increased 
risk of developing TKI resistance, and second, the assessment of an 
individual’s polymorphism status does not require an analysis of 
tumor-specific DNA. The former characteristic offers the potential 
for preventing the emergence of TKI resistance by therapeutic means 
(for example, treatment with a BH3-mimetic drug at the time of ini-
tial presentation or at the first sign of resistance), whereas the latter 
characteristic is particularly advantageous in solid tumor situations, 
as in EGFR NSCLC, when a second biopsy for tumor-specific tissue 
usually necessitates an invasive procedure. Although recent work has 
highlighted the value of BIM RNA levels in tumors before treatment 
in predicting TKI responsiveness42, our discovery emphasizes the 
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mutant NSCLC treated with EGFR TKI therapy. 
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with NSCLC from Singapore and Japan who 
were known to have activating mutations in 
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Kaplan-Meier method. (b) Schematic depicting 
the mechanism by which the BIM deletion 
polymorphism causes TKI resistance. After TKI 
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expression of exon-4–containing (and, therefore, 
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cells that harbor the deletion (BIMi2+/−) favor 
the splicing and expression of exon-3–containing transcripts that do not encode the BH3 domain. The generation of exon-3–containing isoforms occurs 
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importance of biomarkers that can also predict the induction of func-
tional isoforms of BIM after TKI exposure.

By elucidating the effects of the deletion polymorphism on BIM 
function, we also were able to describe a previously unknown splicing 
mechanism by which the polymorphism contributes to drug resistance 
in CML and EGFR NSCLC (Fig. 5b). Thus, in showing that resistance 
is caused by impaired expression of BH3-containing BIM isoforms, 
we confirmed that pharmacologic restoration of BIM function could 
overcome this particular form of TKI resistance in both cancers. Our 
findings also support the increasingly recognized role of alterations 
in the splicing pattern of genes in human disease43,44 and provide a 
new example of an inherited mutation that contributes to resistance 
against targeted cancer therapies. However, we note that although the 
presence of the deletion polymorphism is strongly associated with 
clinical TKI resistance and shorter PFS, other genetic factors, both 
acquired and inherited, will probably dictate the final response to 
TKI therapy in any individual patient. Indeed, several other mecha-
nisms of EGFR-independent resistance have been described, including 
upregulated hepatocyte growth factor–dependent signaling45, nuclear 
factor κ-light-chain-enhancer of activated B cells (NF-κB)-dependent 
signaling46 and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 
(KRAS) mutations47. It will therefore be crucial to determine how 
these factors interact with each other to contribute to TKI resistance,  
which, given the relatively low incidence of each individual contributor,  
will require larger prospective studies.

Clinical resistance to TKIs has been commonly classified as being 
primary or secondary, with the latter defined as occurring in indi-
viduals who experienced an initial response to TKI therapy and then 
later developed resistance. It is also assumed that secondary resistance 
is mediated by acquired somatic mutation(s) that emerge under the 
selective pressure of TKI therapy, whereas intrinsic mechanisms of 
resistance (including germline polymorphisms) are more likely to 
present with primary resistance and a lack of any upfront response. 
This line of reasoning is based on the assumption that resistance-
 conferring germline polymorphisms result in absolute as opposed to 
relative TKI resistance. However, by creating both CML and EGFR 
NSCLC cells with the deletion, we show that the BIM polymor-
phism results in relative TKI resistance. This finding is consistent 
with cancer cells being sensitive to small changes in BIM protein 
concentrations8,48 and with BIM protein concentrations exerting a 
dose-dependent effect on apoptosis and on the degree of TKI resist-
ance8. Accordingly, we expected to see some degree of response in 
TKI-treated subjects harboring the polymorphism, which we indeed 
confirmed in the setting of both CML and EGFR NSCLC.

Although our data focus on the effect of polymorphisms on thera-
peutic responses, it is possible that human polymorphisms also account 
for heterogeneity among other aspects of cancer biology. Unlike the 
BIM deletion, these other polymorphisms could conceivably result in 
enhanced therapeutic responses or could even cooperate with driver 
mutations to accelerate or delay cancer progression. As we have shown, 
a mechanistic understanding of how such polymorphisms affect gene 
function may lead to improved management of patients with cancer 
with respect to prognostication and therapy. In the case of TKI resist-
ance in individuals with the BIM polymorphism, the addition of BH3 
mimetics to the standard TKI therapy may allow for personalized 
treatment to overcome resistance or even to prevent its emergence. 
Finally, although the ethnic segregation of the polymorphism is in 
itself interesting, the greater importance of our findings may be that 
it is prototypic of other polymorphisms, yet to be discovered, that 
account for intrinsic drug resistance in different world populations.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturemedicine/.

Accession codes. The sequencing data have been submitted to the 
NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) 
under accession number GSE28303 (clinical samples) and GSE26954 
(K562), and were analyzed as described in the Online Methods.

Note: Supplementary information is available on the Nature Medicine website.
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ONLINE METHODS
Ethics committee approval. Clinical CML samples were obtained from 
patients seen at the Singapore General Hospital, the Akita University Hospital, 
the University of Malaya Medical Centre and the National University Cancer 
Institute, Singapore. German control samples were obtained from blood donors 
at the University Hospital of Bonn. Malay, Chinese and Indian control samples 
were derived from recent local population studies49,50. Clinical NSCLC samples 
were obtained from patients seen at the National Cancer Centre, Singapore, the 
Toho University Omori Medical Center, Japan, the Aichi Cancer Center, Japan 
and the National University Cancer Institute, National University Health System, 
Singapore. Written informed consent and institutional review board approval 
at the participating institutions were obtained from all patients and normal 
individuals who contributed samples to this study.

DNA-PET sequencing and structural variation detection. DNA-PET sequenc-
ing and clustering of discordant PETs (dPETs) for structural variation detection 
has been described in Hillmer et al.51. DNA-PET libraries with 5-, 7- and 9-kb 
DNA fragments (Supplementary Table 2) were sequenced using the SOLiD 
platform (Applied Biosystems). The sequencing data from this study have been 
submitted to NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE28303 for the five patient samples 
and under accession number GSE26954 for K562. The genomic region that was 
covered by the 5′ tags of a dPET cluster was defined as the 5′ anchor, and the 
genomic region that was covered by the 3′ tags of a cluster was defined as the  
3′ anchor. dPET clusters with anchor regions <500 bp were excluded from further  
analyses. The DNA-PET sequencing of K562 has been described earlier51. The 
same K562 dPET clusters used previously were also used in the present study, 
but the centromeric regions were not excluded here, dPET clusters with anchor 
regions <500 bp were excluded here (previously clusters with anchor regions 
<1,000 bp were excluded), and a new exclusion and filtering procedure was 
applied here (Supplementary Note and Supplementary Table 13).

Genotyping of the BIM polymorphic deletion. Determination of patient  
genotype. We extracted genomic DNA from either patients’ peripheral blood 
(for both CML and NSCLC) or from formalin-fixed paraffin-embedded  
(FFPE) biopsy slides and blocks (for NSCLC). For DNA extracted from 
blood samples, we genotyped the deletion in the samples by a single PCR 
reaction using the primers 5′-AATACCACAGAGGCCCACAG-3′ and  
5′-GCCTGAAGGTGCTGAGAAAG-3′ and JumpStart RedAccuTaq LA DNA 
Polymerase (Sigma) with the following thermo cycling conditions: 96 °C for 30 s,  
(94 °C for 15 s, 60 °C for 60 s and 68 °C for 10 min) ×29 and 68 °C for 20 min.  
The resulting PCR products from the deletion (1,323 bp) and the wild-type 
(4,226 bp) alleles were analyzed on 1% agarose gels.

For DNA recovered from FFPE tissues, we performed two separate 
PCR reactions to determine the presence of the wild-type and deletion  
alleles. The wild-type allele was genotyped using the forward primer 5′-CCA 
CCAATGGAAAAGGTTCA-3′ and the reverse primer 5′-CTGTCATTTC 
TCCCCACCAC-3′. The deletion allele was genotyped using the forward 
primer 5′-CCACCAATGGAAAAGGTTCA-3′ and the reverse primer 5′-GGC 
ACAGCCTCTATGGAGAA-3′. We performed PCR reactions using GoTaq Hot 
start Polymerase (Promega) with the following thermo cycling conditions: 95 °C  
for 5 min, (95 °C for 50 s, 58 °C for 50 s and 72 °C for 1 min) ×39 and 72 °C for 
10 min. The PCR products for the deletion (284 bp) and the wild-type (362 bp)  
alleles were analyzed on a 2% agarose gel and were sequenced.

Determination of population frequency. We used Affymetrix Genome-Wide 
Human SNP Array 6.0 intensity data downloaded from the HapMap52 homepage 
(http://snp.cshl.org/) to infer the copy number of the deletion polymorphism 
in BIM for the HapMap samples. Two genotyped single nucleotide positions 
were located within the deletion: SNP_A-4195083 and CN_173550. The raw 
intensities of the two markers were used to call the copy number variation event 
using a Gaussian mixture model similar to the algorithm proposed by Korn and 
colleagues53. Using this procedure, we predicted the copy number and, there-
fore, the presence or absence of the deletion in unrelated HapMap samples of 
European (n = 60), Yoruban (n = 60) and Chinese or Japanese (n = 90) origin. 
We then genotyped the deletion in the Chinese and Japanese samples for which 
we had available DNA (n = 74) by PCR as described above with the following 

slight modifications of the thermo cycling conditions: 96 °C for 30 s, (94 °C for 
15 s, 64 °C for 30 s and 68 °C for 5 min) ×12, (94 °C for 15 s, 60 °C for 30 s and 
68 °C for 5 min) ×18 and 68 °C for 20 min. We used the PCR-based genotypes to 
refine the single-nucleotide intensity cutoffs for genotype calling in the European 
and Yoruban samples and used only the PCR-validated genotypes of the East 
Asian samples for frequency assessment.

To investigate further whether the deletion in the European population is at 
moderate frequency but has been missed by chance in the HapMap samples and 
to determine more precisely the deletion frequency in Asia, we genotyped by 
PCR assay 595 German, 600 Malay, 608 Chinese and 605 Indian samples.

Calculation of attributable fractions for the BIM deletion. To calculate the 
population attributable fraction (PAF) of treatment resistance in East Asian 
patients, we used PAF = ( f(OR − 1))/(f(OR − 1) + 1), where f is the frequency 
of deletion carriers among patients ( f = 0.133), and OR is the odds ratio of the 
deletion carriers between patients being resistant and patients being sensitive 
to TKI treatment (OR = 2.94).

FISH. We used Vysis LSI (Locus specific identifier) BCR/ABL1 dual-fusion 
translocation probes (Abbott Molecular) for detecting BCR-ABL1. The LSI BCR 
probe is labeled with SpectrumGreen, and the LSI ABL1 probe is labeled with 
SpectrumOrange. We treated cells with 0.75 M KCl for 15 min at 37 °C. After 
fixation, we dropped the nuclei on slides for FISH according to the manufac-
turer’s instructions with slight modifications. Briefly, we dehydrated the slides 
in a co-denaturated alcohol series for 3 min at 75 °C, which was followed by 
an overnight hybridization at 37 °C. We evaluated FISH signals in 200 inter-
phase nuclei using a fluorescence microscope (Olympus BX60) under 1,000× 
magnification.

Cell lines, culture and chemicals. We purchased CML lines from American Type 
Culture Collection (ATCC) (MEG-01 and KU812), the Japanese Collection of 
Research Bioresources (NCO2) and the German Collection of Microorganisms 
and Cell Cultures (KCL22, K562, KYO-1, JK1, BV173 and NALM1). NSCLC 
cells (PC9 and HCC2279) were a gift from P. Koeffler. We cultured cells in 
RPMI-1640 medium supplemented with penicillin/streptomycin, glutamine and 
10% FBS and incubated them in a humidified incubator at 37 °C with 5% CO2. 
Zinc-finger-nuclease–edited K562 and PC9 cells were generated and maintained 
in RPMI-1640 medium supplemented with penicillin/streptomycin, glutamine 
and 20% FBS. Drugs were dissolved in DMSO (50% for imatinib; 100% for 
gefitinib and ABT-737) and kept at −20 °C. We used 1 µM imatinib and 0.5 µM 
gefitinib for all experiments, unless otherwise indicated. The treatment time was 
12 h (Figs. 2g and 3d), 24 h (Figs. 2h–j and 4) or 48 h (Fig. 3e–i).

Real-time PCR analysis of exon-specific BIM transcripts. We extracted 
total cellular RNAs using the RNeasy Mini Kit (Qiagen). RNA was reverse 
transcribed using Superscript III First-Strand Synthesis System (Invitrogen) 
and quantitatively assessed using the iQ5 Multicolor Real-Time Detection 
System (Bio-Rad) with a total reaction volume of 25 µl. Primers were annealed 
at 59 °C for 20 s, and the amplicon was extended at 72 °C for 30 s. The total 
number of cycles quantified was 40. Transcript levels of β-actin or exon 2A 
of BIM were used to normalize between samples. The following primers were 
used: BIM exon 2A (forward: 5′-ATGGCAAAGCAACCTTCTGATG-3′; 
reverse: 5′-GGCTCTGTCTGTAGGGAGGT-3′), BIM exon 3 (forward: 5′-CA 
ATGGTAGTCATCCTAGAGG-3′; reverse: 5′-GACAAAATGCTCAAGGA 
AGAGG-3′), BIM exon 4 (forward: 5′-TTCCATGAGGCAGGCTGAAC-3′; 
reverse: 5′-CCTCCTTGCATAGTAAGCGTT-3′) and β-actin (forward: 5′-GGAC 
TTCGAGCAAGAGATGG-3′; reverse: 5′-AGCACTGTGTTGGCGTACAG-3′).

RT-PCR and sequencing of BIM transcripts. To assess whether the splicing of 
BIM exons 3 and 4 are indeed mutually exclusive, we performed RT-PCR and 
sequenced all BIM transcripts that were amplified. Total cellular RNA extraction 
and reverse transcription was performed using the method described above. We 
used the forward primer 5′-ATGGCAAAGCAACCTTCTGA-3′ and the reverse 
primer 5′-TCAATGCATTCTCCACACCA-3′ to amplify all transcripts that con-
tained exons 2 and 5. These primers were annealed at 57 °C for 30 s, and the 
amplicons were extended at 72 °C for 1 min. To amplify transcripts containing 

np
g

©
 2

01
2 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://snp.cshl.org/


nature medicine doi:10.1038/nm.2713

exon 3, we used the forward primer 5′-TGACTCTCGGACTGAGAAACG-3′ 
and the reverse primer 5′-CCAAAGCACAGTGAAAGATCA-3′. These primers  
were annealed at 55 °C for 30 s, and the amplicons were extended at 72 °C for 30 s.  
All PCR products were cloned into pJET1.2/blunt vector (Fermentas) before 
they were sent for sequencing analysis.

Western blot. We used antibodies to the following to perform western blotting: 
BCR-ABL1 (#2802), pBCR-ABL1 (#2861), BIM (#2819), CRKL (#3182), pCRKL 
(#3181), CASPASE 3 (#9662), cleaved CASPASE 3 (#9661), STAT5A (#9310), 
pSTAT5A (#9359), ribosomal protein S6 (RPS6; #2317), pRPS6 (#2211), PARP 
(#9542), phospho-EGFR (Y1068,#2234) (all from Cell Signaling Technology), 
Flag-M2 clone and β-actin (#AC-15, Sigma). The antibody dilutions used were 
1 in 1,000, except for pRPS6 (1 in 2,000) and β-actin (1 in 5,000). A BIM-γ– 
specific antibody was generated by a commercial entity (Open Biosystems). HRP-
conjugated secondary antibodies were specific to rabbit (Sigma) or mouse IgG 
(Santa Cruz biotechnology). The protein bands on the membrane were visual-
ized using the Western Lightning chemiluminescence reagent (PerkinElmer).

Minigene vector construction. We used the pI-12 splicing vector (a gift from  
M. Garcia-Blanco) to construct the minigene vectors pI-12-MUT and pI-12-WT,  
which contained and did not contain the deletion polymorphism, respectively. 
Briefly, BIM exon 4, together with a 659-bp sequence upstream of exon 4,  
was amplified from KCL22 genomic DNA using forward primer 5′-GCC 
GCTCGAGTCTCTCCATGTGGTGTTTG-3′ and reverse primer 5′-GCC 
GAAGCTTCCTCCTTGCATAGTAAGCGTT-3′. The PCR product was sub-
cloned into the XhoI and HindIII sites in the pI-12 plasmid to generate an 
intermediate vector. BIM exon 3 and the upstream region with and without 
the deletion polymorphism were amplified from KCL22 genomic DNA using 
forward primer 5′-GCCGGATATCATGGAAGGAACTGACCTGGTG-3′ and 
reverse primer 5′-GCCGATCGATGTAGGAAACTGGGTGAATGGC-3′. The 
two PCR products (4,500 bp and 1,597 bp) were subcloned into the EcoRV and 
ClaI sites in the intermediate vector to obtain the pI-12-WT and pI-12-MUT 
constructs. The ratios of exon 3 to exon 4 transcripts in the transfected cells 
were obtained by qPCR using specific primers for the U-E3 and U-E4 tran-
scripts. Transcript levels were normalized to the adenovirus exonic sequence 
(U). The following primers were used: adenovirus exon (forward: 5′-CGA 
GCTCACTCTCTTCCGC-3′; reverse: 5′-CTGGTAGGGTACCTCGCA-3′), U-E3  
transcript (forward: 5′- CGAGCTCACTCTCTTCCGC-3′; reverse: 5′-CTCTA 
GGATGACTACTGGTAGGGT-3′) and U-E4 transcript (forward: 5′-CGAGC 
TCACTCTCTTCCGC-3′; reverse: 5′- CCTCATGGAAGCTGGTAGGGT-3′).

siRNA knockdown of E3-containing BIM transcripts. siRNAs against E3- 
containing BIM transcripts (BIM-γ siRNA1: 5′-CCACCAUAGUCAAGAUACA-3′;  
BIM-γ siRNA2: 5′-CAGAACAACUCAACCACAA-3′) and negative control 
siRNA (ON-TARGETplus Non-targeting siRNA #1) were purchased from 
Dharmacon Inc (Lafayette). Nucleofection was performed on KCL22 cells using 
Nucleofector Solution V (Lonza) in the presence of siRNAs.

Determination of protein stability and apoptotic activity of different BIM 
 isoforms. We cloned the complementary DNA of different BIM isoforms 
(BIMEL, BIML, BIMS and BIM-γ ; gifts from A. Vazquez) into the pcDNA3-
FLAG3 vector (a gift from K. Itahana). We transfected 5 µg of plasmid into 
KCL22 (Supplementary Fig. 2e) or K562 cells (Supplementary Fig. 3a,b,d) by 
nucleofection. To determine apoptotic activity, we used Annexin V-FITC and 
7-AAD staining and flow cytometry. To determine the stability of the BIM-γ and 
BIML proteins, we treated transfected cells with 50 µg/ml of cycloheximide 44 h  
after nucleofection. Then we harvested the cells at various time points after 
treatment (0, 0.5, 1, 3, 5 and 7 h), and we determined the stability of Flag-tagged 
BIM-γ or BIML by western blot using antibodies to the Flag epitope.

Creation of BIM deletion polymorphism by ZFNs. The ZFN was custom made 
by Sigma-Aldrich CompoZr TM ZFN Technology with the following binding and 
cleavage sites: 5′-CCTTCCCTGGAA-ctggga-ATAGTGGGTGAGATAGTG-3′ 
(with the binding site in bold and the cleavage site not bolded). The cleavage site 
is located 551 bp downstream of the 5′ end of the BIM deletion polymorphism 
region. The repair template contained only the two flanking homology arms but 

not the BIM deletion polymorphism region. The repair template was constructed 
using a PCR strategy that used the KCL22 genomic DNA as a template and the 
forward primer 5′-CATAAATACCACAGAGGCCCACAGC-3′ (corresponding 
to a site 619 bp upstream from the 5′ end of the BIM deletion polymorphism) 
and reverse primer 5′-CCCTCGAAGACACCTCTATTGGGAGGC-3′ (corre-
sponding to a site 743 bp downstream of the 3′ end of the BIM deletion poly-
morphism). We subcloned the 1,362-bp PCR product into the vector pCR-Blunt 
II-TOPO (Invitrogen), and we confirmed the correct template by sequencing.

The repair template and ZFN-encoding plasmids were transfected into 
K562 cells using the protocol mentioned previously54. To generate genome-
edited cells, PC9 cells were seeded at a density of 2 × 105 cells per well in a six- 
well plate 1 d before transfection. The cells were transfected with the repair 
template (6 µg) and ZFN-encoding plasmids (0.6 µg each) using Fugene HD 
(Promega, USA). One day later, the transfected PC9 cells were arrested at the 
G2 phase for 18 h with 0.2 µM vinblastine (Sigma, USA). The cells were released 
from G2 arrest by washing twice in PBS, re-plating in a new tissue culture plate 
and being allowed to recover for 72 h.

We isolated the genome-edited K562 and PC9 clones by dilution cloning. We 
diluted the transfected cells to a density of 2.5 cells/ml and seeded 200 µl of the 
diluted cells into each well of a 96-well plate. Clones that successfully amplified 
from each well were harvested, and the genomic DNA was isolated using a 
Qiagen DNEasy kit (Hilden).

We screened for clones having the BIM deletion polymorphism by PCR using 
primers annealing to the BIM intronic region outside of the repair template, 
an approach that ensured the repair template would not be amplified. We used 
the forward primer 5′- GGCCTTCAACCACTATCTCAGTGCAATGG-3′ (cor-
responding to a site 1,507 bp upstream from the 5′ end of the BIM deletion 
polymorphism) and the reverse primer 5′-GGTTTCAGAGACAGAGCTGGG
ACTCC-3′ (corresponding to a site 767 bp downstream of the 3′ end of the BIM 
deletion polymorphism) for PCR.

ELISA-based DNA fragmentation detection and western blotting on genome-
edited K562 and PC9 clones. The presence of mono- and oligo-nucleosomes in 
the apoptotic cells was detected using the Cell Death Detection ELISA (Roche), 
following the manufacturer’s instructions. Genome-edited K562 cells were 
seeded at a density of 2 × 105 cells/ml. Five milliliters or 0.5 ml of cells were 
used for western blot or the apoptotic assay, respectively. The cells were har-
vested 48 h after treatment. Genome-edited PC9 cells were seeded at a density of  
5 × 104 cells/ml. Ten milliliters or 0.5 ml of cells were used for western blot or the 
apoptotic assay, respectively. The cells were harvested 24 h after treatment.

Apoptosis assay in primary CML samples. We measured apoptosis in primary 
CML samples using the Annexin V-FITC kit (Beckman Coulter, IN) with propi-
dium iodine, following the manufacturer’s instructions. Statistical significance 
was determined using a one-tailed Wilcoxon rank sum test, as deletion-containing  
cells are expected to be more resistant than non–deletion-containing cells.

Trypan blue assay. PC9 and HCC2279 cells (5 × 105 and 1.6 × 105 cells, respec-
tively) were seeded in triplicate and treated for 48 h. The cells were trypsinized, 
and the number of viable cells was determined by trypan blue exclusion.

Mutation analysis for EGFR. FFPE slides of lung tumors were deparaffined 
by washing the slides in xylene and absolute ethanol. Lung cancer regions 
from each slide were scraped and transferred into a 1.5-ml tube, and genomic 
DNA was extracted using a QIAamp FFPE Tissue kit (Qiagen). EGFR exons 
18–21 were sequenced. Fifty nanograms of FFPE genomic DNA was ampli-
fied by PCR in a 20 µl reaction volume containing 10 µl of GoTaq hot start 
Taq colorless master mix (M5133, Promega) in the following PCR conditions: 
95 °C for 5 min, DNA amplification for 35 cycles at 95 °C for 50 s, 58 °C for 
50 s, 72 °C for 60 s and a final extension at 72 °C for 10 min. The PCR prim-
ers used were: exon 18 (forward: 5′-TGGCACTGCTTTCCAGCATGG-3′; 
reverse: 5′-CTCCCCACCAGACCATGAGAGG-3′), exon 19 (forward: 5′-ATC 
ACTGGGCAGCATGTGGCA-3′; reverse: 5′-CCTGAGGTTCAGAGCCAT 
GGAC-3′), exon 20 (forward: 5′-CATGCGAAGCCACACTGACGTG-3′;  
reverse: 5′-GCATGTGAGGATCCTGGCTC-3′) and exon 21 (forward: 5′-GA 
TCTGTCCCTCACAGCAGG-3′; reverse: 5′-GGTGTCAGGAAAATGCTGG 
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CTG-3′). PCR products were purified by Exonuclease I (M0293L, New England 
Biolabs) and Shrimp Alkaline Phosphatase (Promega) treatments. Purified PCR 
products were sequenced in the forward and reverse directions using the ABI 
PRISM BigDye Terminator Cycle Sequencing Ready Reaction kit (Version 3) on an 
ABI PRISM 3730 Genetic Analyzer (Applied Biosystems, Foster City, California). 
Chromatograms were analyzed by SeqScape V2.5 and manual review.

Statistical analysis for PFS of patients with EGFR NSCLC. The primary end-
point in this study was to examine the effect of the BIM deletion polymorphism 
on the PFS of patients with EGFR-NSCLC from East Asian countries who were 
treated with EGFR TKIs. We calculated the PFS from the initiation of EGFR TKI 
therapy until either tumor progression or death from any cause. Observations 
were censored if TKI therapy was stopped because of side effects or if treatment 
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